

M000 FOM M000 RANGE USEFULNESS. IT PRIZED CARBON HAS 5 FOR 유 BEEN USES, FROM 175 IMPACT. VERSATILE 2 STRENGTH, EFFICIENCY, DURABILITY Z ALSO A RENEWABLE IMPORTANT CONSTRUCTION AND TRADITIONAL MATERIAL **RESOURCE** MATERIAL FURNITURE Z CONSTRUCTION HAVING DNA HIIM MAKING.

HARDWOOD - OAK, TEAK SOFTWOOD - PINE, CEDAR

ENGINEERED WOOD - PLYWOOD. PARTICLE LAMINATE WOOD WOOL & FIBRE BOARD BOARD . MPF, BOARD, HDF,

ADVANTAGES . THEY ARE BOARP , VENEERS

CONSISTENT, FLEXIBLE

OF WOOD

GLUEP

TOGETHER

Z

ALTERNATE

FROM

W

SR

MORE

THIN LAYERS / VENEER

ENGINEERED WOOD

GRAIN PIRECTION

APPLICATION : PACKAGING , FLOORING , FURNITURE

MARINE PLY

FOR BOATS, BUILDING

CONSTRUCTION

PLY WOOD

VERSATILE

APPLICATIONS 5 WOOD WOOL, ALSO KNOWN AS WOOD, COMPRESSED MATERIAL PACKAGING MATERIAL FOR CUSHIONING, BEDDING FOR ANIMALS AND CAGES. MAPE FROM THIN, CURLED STRAND FROM LOGS EXCELSIOR.

BOARD

MATERIAL

MADE OF

SOFTWOOD STRIPS

LAMINATED BOARD 15

P

COMPOSITE

GLUEP

AND SANDWICHED

BETWEEN

LHPI HARD BOARD , ALSO FIBERBOARD (HDF) BONDED AND BROWN WITH TOGETHER ROUGH ON OTHER KNOWN AS HIGH PENSITY 7 UNDER HEAT AND PRESSURE SMOOTH SURFACE MADE FROM WOOD FIBERS ON ONE

APPLICATIONS CABINET BACKINGS, PEG BOARD

BOARD

APPLICATION FLUSH DOORS, TABLE

TOP

BOARD

SHEETS OF PLY

PARTICLE

BOARD, ALSO KNOWN

MOOP

HOT - PRESS.

PARTITIONS, FURNITURES

IS MADE FROM VERY

SMALL PARTICLES OF

FIBER5 SOFT BOARD, ALSO KNOWN AS FIBER BOARD (LDF) IS MADE FI HARD BOARD 15 MADE BONDED TOGETHER PNISA LE55 PRESSURE WITH ADHESIVES FROM WOOD MOJ DENSITY

 \exists APPLICATIONS HAS FIBROUS NOTICE BOARD, SOUND, HEAT INSULATION BOARD TEXTURE

M00D

HTIM STRANDS, PARTICLES, VENEERS WOOD INCLUDES ADHESIVES CALLED MATERIAL MANUFACTURED MASS TIMBER . COMPOSITE OR OTHER RANGE 유 BOARD METHODS PERIVATIVE OR BOARDS 유 MOOD 유 WOOD, MAN-MADE FIXATION WOOD, TOGETHER INCLUDES BINDING TO FORM

PENSITY BOARD, FIBRE BOARD, COMPOSITE ORIENTED STRAND BOARD, MEDIUM INCLUPE STABLE, UNIFORM, PLYW00P

POPULAR

EXAMPLES

50FT

BOARD

MEDIU

FIBERBOARD

240 X 1220MM

12,16

2440 X 1220MM

2440 X 1220MM

HARP

BOARD

MOOP

MOOL

PARTIC

LE BOARD

LAMIN

ATEP

BOARD

2400 x 1200MM

2750 x 1830MM

7,11,12,15,17,18

1200MM

2440 MM × 1220

4, 6, 9, 12,

22,25

MAT

ERIAL

DIMENSION

PLYWOOD

DENSITY FIBERBOARD

нідн

DENSITY

2440 X 1220MM

6, 12, 15.

50FTW00D MITH APPLICATIONS MADE NTO INTERIOR CABINET, SHOW AND FLOORING FIBERS. RESIN BREAKING MATERIAL BINDER OFTEN Z HARD WOOD PEFIBRATOR

11 15 15 APPLICATIONS HIGH USE SIMILAR DENSER BACKING 5 AND PARTICLE PANEL5 HOOH FURNITURE, BOARD STRONGER POOR AND OKIN6 MOF

71	HARD SOFT MEDI	PARTI WOOL	MATERI
FIBERBOARD HIGH DENSITY FIBERBOARD	HARD BOARD SOFT BOARD MEDIUM DENSITY	PARTICLE BOARD	MATERIAL
12MM - 65/-	6MM - 180/- 12MM - 20/- 16MM - 70/-	97MM - 47/- 12MM - 12TO29- 16MM - 129-	COST 30 MM - 150/

		The second		SIGNATURE
COLLEGE . ANRVSA	SUB : MMBC	SEM: 7	USN: IAA21AT018	NAME: HARSHITA
	(T.) ()		No. Person	SHEET NO.

STRIPS TECHNICAL SANDWICHED BOARD PROPERTIES : MODULUS BETWEEN ENGINEERED HARDWOOD PLYWOOD MADE 유 VENEERS 유 SOFTWOOP

BENDING LENGTH AND STRENGTH, FIRE SAFETY CATEGORY, THICKNESS WIPTH TOLERANCE **ELASTICITY** LONG, PENSITY, TOLERANCE,

~

CARPENTERS

EMPLOY

THEIR

MOOP

BLOCK BOARD

2 QUALITY AND USE T GRADE INTERIOR GRADE AND EXTERIOR BLOCKBOARD

PEPENDING ON RAW WOOD USED ~ SOFTWOOD BOARD AND HARDWOOD BLOCK-

INTERIOR EXTERIOR GRAPE SERVICES GRADE BLOCKBOARD BLOCKBOARD : THIS TYPE AND ARE THESE UNSUSCEPTIBLE GRADES 유 ARE 70 BLOCKBOARD MOISTURE PRODUCED PRODUCED

AL50

FAMOUS FOR

112 FICHI -

COMPRISED

유

CORE BLOCKS

EMPLOY THE

BULK OF

BOARD

PRODUCED

2

SUITABLE TO

LIGHTWEIGHT

BLOCKBOARD

FOR BLOCK BOARDS

WEIGHT

34

175

MADE

FROM

SOFT WOOD

AND

15 EFFORTLESS

DOLLDOOK

USES EXTERIOR GRADES ARE

ALSO KNOWN AS

0

TRANSPORT

OPERATING SOFTWOOD EACH GLUE. BLOCK BOARD : SOUD BLOCKS BLOCKBOARD 13375 ATTACHEP of F DOOD HIIM ATLNIOR ARE EMPLOYED TO

STRONG HARPWOOD BLOCKBOARD HARDWOOD CORE PRODUCED FROM 15 RIGIP DENSE, HEAVY, COSTLY AND SHEETS

Y 3HT BOAR D ARE SOUNDNESS CHEAP SUFFICIENT BLOCK-YIMBM15

PR05

CAN EFFICIENTLY RELIABLE HARD MATERIALS **THEY** ARE TON

PROCESSING DNA THEY PONT ARE MORE

CARPENTERS 7 WEEN SOFTWOOD CHALLENGING

► 5HRINKAGE & WISE DONE 7 MAY SWELLING BREAK MAY

THEY ARE THPH LARGELY IN WEIGHT,

THE UNDESIRABLE VOID HAVE LONG DURABILITY VULNERABLE BET-

SCREWING AND NAILING SHOWD

APPEAR CAREFULLY; OTHER -

TO WORK FOR STRIPS MAKES

10 BOOKSHE DESIGN CONS HOS REGULAR **5UCH** BENCHES,

▼ 2 WALL PANELS

SOLID COR

¥ Z PARTITION WALLS

Ī FLOORING

Z 1400M WORK

INTERIOR DECORATION

Z PREFABRICATED Houses

MATERIAL 80% BODIES

NEEDED

3

UNDER

METAL

FRAME

PRESSURE

GLUED

(2) METAL

FRAME

7

PUT

PRESSURE

3

COLD

HYDRAULIC

PRESS

RESIN.

PRYING

FORMALPEHYPE

AND

PHENOL

FORMALDEHYDE

, A PLASTIC

GLUE

ADHESIVES

CONNECT THE

PIECES, SUCH AS UREA-

CUTTING

THUS, VENEER

FOR

COATING 15

ACQUIRED

PNINTS

ROTARY

CUTTING

井

OUTER

LAYER, LOGS

ARE

TRIMMED

A

BLOCKS . THE

STRIPS CAN BE

25 MM

AND

WATER

CONTENT

LEFT

INSIDE

THE

BLOCKS. FOR DRYING

THE

BLOCKS

ARE

DRIED

70

DECREASE

THE

MOISTURE

THE BLOCKS

ARE

PRESERVED

BEFORE

THE

NO S

BLOCK 5

ARE

CONNECTED

EMPLOYING

SOFTWOOP

OR HARDWOOD

COATING

ACCOMPLISHED

AT TACHING

FINISHING

LAMINATION ,

CORE

STRIPS

(1) STRIPS PALM

OF PATE

9

(4) LAYING

drued Nd Ob

HE

CORE

THIN MDF

THE

TIMBER

LOGS ARE

CUT

A

FIR5T

TO MAKE

THE

RAW

5LICIN6

SIGNATUR NMBC

INTRODUCTION: THE HIM PRE-STRESSEP RAJIV BANDRA - WORLI GANDHI SEA LINK, IS A SEA LINK, OFFICIALLY CALLED CABLE - STAYED

AMONG

FOL

CONSTRUCTION

CONSTRUCTION

ERECTION

STRESSING

CONSTRUCTION

CONSTRUCTION

CABLE

STAYE

THAT ī LINK6 HTUOS BANDRA IN MUMBAI ACR055 CONCRETE - STEEL
WESTERN SUBURBS MAHIM BAY VIADUCTS ON EITHER 유 MUMBAI MITH

- BANDRA WORLI SEA LINK 15 THE LONGEST SEA BRIDGE
- DESIGNED BY SHESHADRI SKINIVASAN (STRUCTURAL ENGINEER) OF INDIA

11GHLIGHT6

- BRIDGE TRUE ENGINEERING HAS 8 LANES MARVEL DEVELOPED S ARABIAN
- 유 BRIDGE CABLE HAS BEEN USEP FOR SUPPORTING VARIOUS STRUCTURES
- ૠ HEIGHT 15 63TIMES THE HEIGHT OF QUTUB MINAR
- THE TRAFFIC, SURVEILLANCE, COMMUNICATION ETC SEA LINK HAS ULTRA MODERN AUTOMATIC SYSTEMS TO MONITOR
- 90,000 TONS OF CEMENT HAS BEEN USEP.

THE THREE DIFFERENT PARTS ~ LINK BRIDGE LAYOUT 15 CATOGORIZED OTN

- PRECAST - THE (PC) SEGMENTAL CONCT NORTH END CONSTRUCTION STRUCTURE MAINLY
- THE HIIM CABLE STAYED BRIDGE AT 50M -STAYED 250M - 250M - 50M SPAN ARRANGEMENT BRIDGE WORL BANDRA CHANNEL CHANNEL
- H PRECAST SEGMENTAL HTIM SOUTH END 50M -50M- 150M - 50M- 50M SPAN ARRANGEMENT APPROACH STRUCTURE CONSTRUCTION MAINLY WITH

TERISTICS

CONSTRUCTION

PIERS

PRE 91RISSED 91RUC

MMBC

21ATOI8

LONGEST SPAN

SYSTEM

AUTOMATED

16-LANE

HEIGHT

126M (413ft)

2 x 250M (820ft)

METHOP

CONSTRUCTION

USEP

FOR

LACHEL

FELICE

DRILLED

SHAFT

DESIGNED

THE

END

BEARING

PILES.

STEE

LINERS

ARE

FRICTION AND

ALL THE

PILES, EACH

유

2M DIA

PROJECT

ARE

FOUNDATION

COMPRISING

유

52 NO'S. M50

BANDRA

WORL

SEA

LZX LZX

STANDS

ON A

HE

PI9 PYLON OF

VERTICAL

AND

CAST IN

PERMANENT

SHAFTS

2×20M (66ft)

HIDIM

TOTAL LENGTH

DESIGN

CONCRETE - STEEL

56KM (35 MILES)

LANE TRAFFIC

CARRIES

KAJIV

GANDHI

SEA

K

HIIM STANDS LOWEST DIVISION SOIL , BASED 15 CALLED FOUNDATION ON WHICH 유 표 BUILDING P STRUCTURE IN DIRECT CONTACT RESTS OR

THE 9 IT IS BASE OF STRUCTURE THAT SOIL MUST LOAD HAVE GROUNDWORK, WHICH IT TRANSFERED CAPACITY 70 7 SOIL FROM BUILDING BEAR 15 70 MEIGHT 200 OF THE BUILT

FUNCTION

- · PISTRIBUTION AREA SF MEIGHT FROM **STRUCTURE** OVER \triangleright
- AVOID UNEQUAL SETTLE MENT
- PREVENT LATERAL MOVEMENT 유 STRUCTURE.
- INCREASE STRUCTURAL STABILITY

FOUNDATION SYSTEM

SHALLOW FOUNDATION WALL FOOTING 150LATED SPREAD FOOTING

- > PILE PEEP FOUNDATION FOUNDATION
- > PIER FOUNDATION
- CANTILEVER / STRAP COMBINED FOOTING FOOTING - CAISSON FOUNDATION
- RAFT / MAT FOOTING

FACTORS CONSIDER

STRUCTURE BEFORE CHOOSING FOUNDATION SYSTEM FOR \triangleright PARTICULAR

- IMPORTANCE 유 BUILDING
- · LIFE OF THE **STRUCTURE**
- LOADS FROM SUPERSTRUCTURE
- · CONSTRUCTION MATERIAL USEP
- WATER TABLE LEVEL
- TYPE ADJOINING **STRUCTURE**
- 201L CONDITION
- LOCATION BUILDING

FOUNDATION

유 SHALLOW FOUNDATIONS **501** AND AT WHICH PEEP ARE F PIVIPEP FOUNDATION 5 PLACED NTO A W REFER5 CATEGORIES 0 DEPTH

VESSEL

THAT

FLOATS

Z

SEA

SH

2011

CALLED

BECAUSE

THE

BUILDING

RAF M OUNDATION

LARGE 2MB RAFT LOAD ARE WHERE **THEY** NOT FOUNDATION ARE T-BEAM AREA BEARING STRUCTURE SUITABLE, USEP OR CAPACITY **STRUCTURE** WHERE = CON515T5 OTHER AL50 9 38 유 710S RECOMMENDED SHALLOW SUBJECTED DISTRIBUTED REINFORCED INAPEQUATE OVER CONCRETE JERK5 SITUATIONS FOUNDATION THE

COLUMNS

RAFT /MAT FOUNDATION ARE ECONOMIC =

- LARGE ΞE **501L** AREA WEAK AND LOAD HA5 0
- THE **STRUCTURE** INCLUDES BASEMENT
- COLUMN 5 ARE PLACED
- OTHER KIND5 유 FOUNDATIONS ARE NOT FEASIBLE
- DIFFERENTIAL **SETTLEMENT** 0 B PREVENTED

ADVANTAGE 5	DISADVANTAGES
*REDUCES SETTLEMENT AND	- REQUIRES CAREFUL DESIGN
DIFFERENTIAL MOVEMENT	TO ENSURE ADEQUATE
- CAN BE MORE ECONOMICAL THAN	REINFORCEMENT
INDIVIDUAL FOOTINGS IN CERTAIN	CAN BE MORE EXPENSIVE
SITUATIONS	PUE TO LARGER VOLUME
SIMPLIFIES CONSTRUCTION ON	OF CONCRETE NEEDED
SITE WITH VARYING SOIL TYPES	

22/10/2014	1	B
8		84

MMBC

ANRV

SIGNATU

RE

8

8

Scanned with CamScanner

NG NG WA

201L e) EARTH REASONS RETAINING AND FILLING BEHIND LATERAL WALL 6) GRANULAR MATERIALS LATERAL PRESSURES 15 RIGIP PRESSURE EXERTED WALL ARE O LIQUID ける 3 **501L** 7 PRESSURE RETAIN / HOLD

- MPORTANCE TAINING WAL
- 7 PREVENT 188 ER05ION RETAINING 표 **501L**
- d IMPROVE AE STHETIC **BEAUTY**
- コ USED Z RESHAPING SLOPE'S
- Z CONTROLLING FL0075 AND ERDSION

1 501L 2 DRAINAGE PRESSURE CHANGE ENOUGH SUPPORT WILL SUPPORT TYPE **501L** STRONG Z EXPAND EXERTED WHEN SOIL THE VOLUME SO, THE **2011** AND RETAINING WALL MADE TO HANDLE SHOULD BE ABLE 73 THERE WALL **7109** CONTAINS MILL SHOULD BE AND WATER RESIST 4

LOAM

2 CANTILEVER STEEL REINFORCEMENT RETAINING DRAINAGE **FOROUS** WALL

STEM. COMPOSED ON SITE R 유 PRE BASE FABRI-AND

FILLING SHEET 5 RETAIN

3

SHEET

D

WALL

PILE

WALLS

ARE

CONSTRUCTED

RESISTANCE

0

ADVANTAGE

REQUIRE 5 CATED OLAN HEIGHT OFFSITE SMALLER M 20

GENERALLY

USED

FOR :

WATER FRONT

EASY

CUSTOMIZE

LONG

LIFE

RIVERBANK

PROTECTION

LIGHT IN

WEIGHT

MATERIA

EARTH,

WATER

S ANY

OTHER

DRIVING

STRESSES

OF CONCRETE TYPE

PIPE

MOST

COMMON

BACK-

QUANTITY

SHEET FILE CROIL CONCRETE

ADJUSTABLE

TONGUE &

SPLINT -REUSABLE EASILY

HAS DISADVANTAGES 7105 MAJOR 5 ROCKY

CANNOT TRUCTURES PERMANENT BOULDERS

10

- OPEN OFFER EXCAVATION Ž UN085TRUCTED
- 00 INSTALLATION NOT REQUIRE TIE BACK
- OFFER SIMPLER
- MATERIAL CONSTRUCTION ANY DURABLE Z 88 FACING APPLIED
 - PROCEPURE STAGED SPE SLIP WALL TYPICALLY SUBSOIL EFFEC 0 CIRCLE 유

- MAXIMUM 1981 EXCAVATION (M)
- FAILURE YAM OCCUR
- WATER
- MENTS WATER FAILURE MOVE

2011

FILL

S

TRENGTHENED

 λa

NOLUGION

9

RODS

BARS

FIBERS

R

NETS

HUHM

(NTERACT

HTIM

SOIL BY

MEANS

FRICTIONAL

RESISTANCE

 \exists

51

P

CONSTRUCTION

MATERIAL

COMPOSED

EARTH

MALL

(REINFORCED

EARTH)

ANCHORED

EARTH

AND

MECHANICALLY

STABILIZED

ECONOMICAL **AESTHETIC** MAINTENANCE BEAUTY VERTICAL CHANGE EXTREME \overline{z} PVAN CRACK PRESSURE TEMPERATURE DUE

1 GRAVITY

RETAINING

WALL

· GRAVITY

RETAINING WALL

MEIGHT

7

WITHSTAND

EARTH PRESSURE

DEPENDS

UPON ITS

SELF-

- **NEARBY** TERMITES FAILING FOUNDATION
- AND SPACE LIMITED NEEDED 9 **M** BEHIND THE HEIGHT
- WALL NOT **501L5** SUIT ABLE FOR BACKFILLING FOR 50FT

d100HS

PROVIDED

LKE

CONCRETE,

STONE.

CONSTITUTED

9

SUBSTANCES

RIB

CONTROL

LAND SLIDES

FUNCTIONAL

TILIZING

RAINWATER

HELPS IN

DIVERTING

STRUCTURES

PREVENTS

DAMAGE

5

IMPROVE 5

DURABLE

LOW

PREVENTS

705

ER0510N

コ

5

TAKEN

NTO

CONSIDERATION

CRIB

BIN RETAINING WALLS

GABIONS

COMPARATIVELY

CHEAP

POSSIBILITIES

OF SLIDING

OVERTURNING

AJUOHS

LOADS LESS DESIGNED 9 **LIGHT MEIGHT** FASTER SUNLIGHT PROPER COROSSION GEO-GRID SITE K 7 CONSTRUCTION DRAINAGE ANTAGE 5 7 TAGES CRANE PREPARATION , GOOD TAKE 오 DETERIORATION EXPOSED LOADS HEAVY

THE STRIPS, 5 GEO GRIPS MATERIALS TOZ PRESENT AS REINFORCING FOR TEXTILES THZ CONSTRUC PRACTICE METAL

REINFO RIE-FOUNDATION

(A) ()			20010	SIGNATURE	
COLLEGE ANKVSA	SUB MMBC	5EM:7	USN: 1AA21AT018	NAME HARSHITA	
	(<u>J</u>		5HEET NO.	

BANDRA - WORLI SEA

LOCATION BANDRA IN SOUTH MUMBAI WESTERN MUMBAI WITH WORLI

CONSTRUCTION

CONCRETE , DESIGNED RETAINING , BLENDING ENVIRONMENTAL WEAR WALL INTO OVERALL MITHSTAND TYPICALLY STRUCTURAL DESIGN DUE MADE HIGH No. S LEVEL5 FROM REINFORCED PRO XIMITY AE STHETIC ゎ

CONSTRUCTION CONJUNCTION WITH SOIL REINFORCEMENT - STEEL CONCRETE - GEOGRIDS AND IMPROVE CONCRETE RETAINING TO ENHANCE CONCRETE 표 GEOTEXTILES PRIMARY MATERIAL USED WALL DAD PAG REINFORCEMENT RETAINING ITS TENSILE STRENGTH BEARING FABRICS WERE USED REINFORCED WALL TO REINFORCE CAPACITY WAS EMBEDDED CONCRETE

EFFECTIVE NATURALLY HYDRO STATIC DAMAGE INCLUDE , REDUCING DRAINAGE SYSTEMS WERE INCORPORATED TO REDUCE PRESSURE BEHIND WEEP HOLES, DRAINAGE PIPES, AND STONE. STRUCTURE WALL BEHIND THE WALL THESE 5 P ALLOW WATER BUILD-UP 70 DRAIN AWAY

PROVIDES EFFECTIVELY STRUCTURAL SUPPORT AND LINK 15 UTILLIZED PRIME SOLUTIONS EXAMPLE PURABILITY, SHOWCASING COASTAL UKBAN INFRASTRUCTURE RETAINING

HE STABILIZE WALLS INTO RECLAINED LAND ALONG BANDRA EROSION, PROTECT OBJECTIVE SEA LINK PROJECT INCORPORATING OF. THE WATER COASTLINE WAS RETAINING

INSTABILITY

WALL

WALL

PROVIDES

PROTECTION

R

AND SUPPORT

SCHEMATIC

THE RETAINING Z CURVE SCHEMAT 5 CONSTRUCTED DISSIPATIVE CVERTOPPING CONCAVE

CURVED REDUCED TURBULENCE Z MOT REFLECTED WAVES AND INCIDEN

TARTH RETAINING 9RUCT 1960 - CHS 5710Y

SEN:

IAAZIATOIS

SHEE.

S

8

MMBC

-FABRICATION CONSTRUCTION MANUFACTURING SITE IHE WHERE PROCESS SITE AND 유 STRUCTURE TRANSPORTING ASSEMBLING COMPONENTS 70 COMPLETE BB LOCA 9F ASSEMBLIES TEP STRUCTURE SUB ASSEMBLIES FACTORY

MOHALI PUNJAB INDIA

BULT BUILDING HTIM ASSISTANCE KIND 유 Z THREE CANES 표 AND STRUCTURE

THA

200

HIG HLY

SKILLED

TECHNICIANS

AND WORKERS

THE MASTERWORK QF 1200 - 1500 kg sjm STANDS TALL IN THIS ALONG WITH LIVE 350kg stm. VIBRANT CITY

并 THERMAL INSULATION, THE OF BUILDING CORE MATERIAL COMPRISES USED POUBLE - SKINNED PUF PANEL ENSURES

BRICK, SAND OR GRAVEL FOUNDATION AND IN THREE - INCH ARE NOT UTILISED DECK Z FLOORING CONSTRUCTION HOWEVER CONCRETE 5 USED

- **▼** AROUND 1.06 , SUSTAINABLE WORK WAS COMPLETED NON - TOXIC
- DIFFERENT STINO (WALL, COLUMN) PRODUCED
- FACTORY ARRANGEMENTS SUCH AS HVAC
- PLUMBING, ELECTRICAL, WERE FITTED IN

DEMONSTRATION UNITS PROTOTYPE

(A) RAPID SEQUENCIAL PRINTING PROTOTYPING LAYERING REFERRED ADDITIVE MATERIAL 5 MANU 0 FAC TURING DDITNE MANUFACTURING) , AL50 KNOWN COMPUTER

MATERIALS

- NYLON · HDPE MOOD FILAMENT FILAMENT

- AND COMPLEX USED DESIGNS Z MANUFACTURING 30 PRINTING PROCESS ALLOW5 COMPLICATED COMPLEX MODELS
- DURABILITY THE AMOUNT OF. SCRAP FROM WOOD BE
- IMPROVED PROJEC PLANNING AND ECONOMICAL

†	1			
		D C		
No.	Post of	13 B	F	
3				
	Marie .			
			7	

HOW	The same of the sa
VANITACEC	DICADIMITACEC
VAINIAGLO	VIDAV VAN IAGLE
(0515	- HIGH ENERGY CONSTRUCTION

AV VAIN IAUL >	VIDAN VAN I AGLD
REDUCE COSTS	· HIGH ENERGY CONSUMPTION
REDUCE TIME	• EXPENSIVE
REDUCE ERRORS	· LIMITED MATERIALS
CONFIDENTIALITY	· NOT USER FRIENDLY
PRODUCTION ON DEMAND	· HARMFUL EMISSIONS
STAY AHEAD OF COMPETITION	• SLOW

REFARMION TO N RING WING

OLL EGE